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Abstract

An analytic solution of the Maxwell equations for aqueous flat cells in rectangular TE102 cavities has led to the prediction of

significant (3–6 times) X-band EPR signal improvement over the standard flat cell for a new sample configuration consisting of

many flat cells oriented perpendicular to the electric field nodal plane. Analytic full wave solutions in the presence of sample and wall

losses have been obtained and numerically evaluated. Observation of the predicted fields led to a classification of three distinct types

of sample loss mechanisms, which, in turn inspired sample designs that minimize each loss type. The resulting EPR signal en-

hancement is due to the presence and centering of a tangential electric field node within each individual sample region. Samples that

saturate with the available RF magnetic field and those that do not are considered. Signal enhancement appears in both types. These

observations, done for the TE102 mode, carry over to the uniform field (UF) modes, a relatively new class of microwave cavities for

use in EPR spectroscopy developed in this laboratory. Rectangular UF modes have an RF magnetic field magnitude that is uniform

in a plane. Based on this analysis, a practical multiple flat-cell design is proposed.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The earliest discussion of aqueous sample cell ge-

ometries seems to be that of Hirshon and Fraenkel [1].

They considered the rectangular TE102 cavity, which has

a central nodal plane at the sample position where the

RF electric field is zero and the RF magnetic field is a

maximum. They designed a so-called ‘‘flat cell’’ that

constrained an aqueous sample in a thin slab lying in

this plane and obtained improved performance relative
to use of a cylindrical capillary. Stoodley [2] wrote a

seminal paper on the subject following the treatment of

EPR sensitivity of Feher [3]. This work was extended by

Wilmshurst [4].

Recently, uniform field (UF) microwave cavity reso-

nance modes for use in EPR spectroscopy were intro-

duced. These modes consist of three sections, a central

section in which the fields are uniform in the dimension
qAbbreviations: EPR, electron paramagnetic resonance; RF, radio

frequency; TE, transverse electric, TM, transverse magnetic.
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corresponding to the axis of the section, and two end

sections that are each effectively 1/4 wavelength long.
Three ways were found to design the end sections: filling

with dielectric [5], making them oversize [6], or making

them re-entrant [7]. A rectangular TE102 UF (TEU02)

resonator with dielectric end sections and an inserted

aqueous sample cell is illustrated in Fig. 1a. This

structure was considered in some detail by Hyde and

Mett [8].

It has been observed by several workers using the
rectangular TE102 cavity that when the flat cell is rotated

a few degrees, the resonator Q-value becomes very poor,

but if it is rotated precisely 90�, the Q-value recovers and
good EPR signals can be obtained that are of similar

intensities to signals obtained in the ‘‘parallel’’ orienta-

tion. The geometry for the UF mode is indicated in

Fig. 1b. Hyde [9] proposed a model to explain this

surprising result: discontinuity of normal electric field at
the cell surface because the high dielectric constant of

water results in a decrease in dielectric losses in the

sample. He also studied insertion of more than one flat

cell in this ‘‘perpendicular’’ orientation, see Fig. 1c and d.

Eaton and Eaton [10] confirmed and extended Hyde�s
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Fig. 1. Rectangular TEU02 cavity [5]. Here, d is the dielectric thickness,

X and L are free parameters, and Y is the free space wavelength. The

Cartesian coordinate axes x, y, and z are along the directions of the

indicated dimensions X , Y , and L, respectively. The TE102 cavity is

obtained by letting d ! 0 and adjusting the dimensions L and Y . In all

cases, aqueous samples are symmetrically arranged about the coordi-

nate origin, which is in the center of the cavity. (a) Sample of thickness

2a is shown in the nodal plane of zero electric field. (b) Sample in the

perpendicular orientation. (c) Geometry of two samples, each of

thickness a separated by a distance 2b. (d) Three-sample geometry, in

which each sample has a thickness a. One of the samples is located in

the center of the cavity and the other two samples are separated from

each other by a distance 2b.

1 The modified coordinate system used for the TEU02 development

presented in [5–8] is used here. In this system, the z-axis is along the

central section axis (the UF dimension), the x-axis is along the free

dimension, o=ox ¼ 0 (in the absence of sample), and the y-axis is

perpendicular to the electric field nodal plane. The TE102 mode in this

coordinate system reads TE�
021 and is given the star superscript to

distinguish the notation from standard.
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results. Thus, it was established that there are two fun-
damental physical principles that govern aqueous sample

cell geometries in EPR spectroscopy: placement in elec-

tric field nodes and surface orientation perpendicular to

E. To date, this has only been a qualitative perspective.

The purpose of this article is to provide a theoretical

analysis of flat-cell geometries in the perpendicular ori-

entation. Our analysis leads to a new theoretical result:

the use of a very large (�70) number of thin flat cells
separated by very thin septa in perpendicular orientation

can be expected to improve sensitivity with respect to a

single flat cell in the standard orientation by a factor of

about six.

The present work is concerned with aqueous EPR

samples in both standard and perpendicular sample

orientations for both cosine TE102 and axially uniform

TEU02 rectangular geometries. As in our previous work
[5,8], the UF mode is generally treated with uniform

central section and cosine dielectric end sections, while
the standard cosine rectangular TE102 mode is a subset
of the formalism. Flat-cell samples of various cross-

sections and widths extending the length of the central

section, or in the case of TE102, the entire resonator

length are considered. Analytical solutions of electro-

magnetic field distributions at X-band (9.5GHz) are

obtained, extending the work of Mett et al. [5] and

Hyde and Mett [8] to the perpendicular sample orien-

tation and to multiple sample regions. The analytic
theory presented here is exact for the case of the

sample width extending over the entire y-axis cavity

dimension. Because this situation is not of practical

interest for the perpendicular orientation, an analytic

approximation to account for the electric field en-

hancement on the sample edge that occurs when the

sample width is smaller than the cavity Y dimension

(viz ‘‘limited sample’’) is introduced. The field integrals
were modified accordingly. Agreement was found be-

tween the resulting Q predictions and those of Ansoft

High Frequency Structure Simulator (HFSS) (version

8.0.25, Pittsburgh, PA).
2. Theory

2.1. Overview

Our analytic solution to the rectangular TEU02 UF

mode in the presence of an aqueous flat cell is an ex-

tension of the work by Mett et al. [5] and by Hyde and

Mett [8]. This theory begins with the field solutions from

Ansoft HFSS for the rectangular TE102 mode, perpen-

dicular sample orientation. This geometry is shown in
Fig. 1b.1 The case of the rectangular TE102 mode is

envisaged by ignoring the dielectric end sections. It was

observed that when the sample extends across the cavity

in the y-direction, the magnetic field component Hx ¼ 0.

It was also observed that all three components of electric

field E are present, unlike the standard sample orienta-

tion. This implies that the sample breaks the TE nature

of the cavity mode. Because only Hx ¼ 0 in the presence
of sample, the mode is transverse magnetic (TM) to the

x-direction. Of course, the mode can also be labeled a

TM mode in the standard sample orientation or before

sample insertion, since Hx ¼ 0 in these cases as well, and

so the difference at this point is semantic. But when the

sample is in the perpendicular orientation, the mode is

not TE, but rather TM. The TM in x designation in the



Fig. 2. Index definitions for the vacuum space and sample regions for

one-, two-, and three-sample configurations. The numerical indices

shown in the figure correspond to the subscripts of the field compo-

nents and constants given in Section 2.2 and Appendices A and B.

2 This electric field value corresponds to the peak RF magnetic field

magnitude value at the coordinate origin as shown by Eq. (6).
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presence of sample implies that one can derive a solution
based on a transverse scalar potential wavefunction

wðy; zÞ, which is the transverse dimension ðy; zÞ func-

tional dependence of the longitudinal electric field

Exðx; y; zÞ. See, for example, Section 8.2 of [11]. This is

the only scalar solution that permits all five of the ob-

served field components to be obtained.

Accordingly, the theory of transverse material dis-

continuity given in Section IIIA of [5] is cast into the
rectangular geometry shown in Fig. 1. The (lossy)

material (which can be the sample or dielectric ends)

plane of discontinuity has three possible orientations:

(1) the x–y plane, which corresponds to the dielectric

ends; (2) the y–z plane, which is the standard nodal

configuration; and (3) the x–z plane, which is the per-

pendicular orientation. Case 1 has been analyzed in the

context of a TE mode in [5]. These analyses and results
are transferable to the perpendicular orientation be-

cause when the mode is uniform in the central section,

the fields are again purely TE both there and at the

dielectric interface. The fields are not TE in the end

section, but are derivable there from the perpendicular

analysis given below. As the UF mode departs from

uniformity in the central section, the mode becomes a

mixed TE and TM mode. Case 2 above has also been
analyzed as a TE mode and the results integrated with

case 1 in [8]. Here, the fields (and wavefunctions) are

uniform in dimension x. Results for the first two cases

in the context of the TM analysis below are summa-

rized in Appendix A. In our analyses, fields vary pe-

riodically in time as e�ixt.

2.2. Dielectric layers perpendicular to the electric field

nodal plane

Consider case 3: the sample(s) oriented perpendicular

to the nodal plane as shown in Figs. 1b–d. Symmetry

about x ¼ 0 is assumed. It is also assumed initially that

the sample width in y extends across the entire cavity,

y ¼ �Y =2. In Section 2.3, the enhancement of the elec-

tric field at the sample edge is empirically modeled when
the sample width Ys is limited, Ys < Y . The various

sample and vacuum dielectric regions in the central

section are labeled, starting from the outside (region 1),

as shown in Fig. 2. For example, Fig. 1c illustrates a

two-sample configuration. As shown in Fig. 2b, this

configuration is mathematically described as a sym-

metric three-dielectric region problem with the outer

vacuum space labeled region 1, the sample labeled as
region 2, and the inner vacuum space as region 3. No

matter how many regions there are, the electromagnetic

cavity mode is a TM mode transverse to x, and inside

any of these regions, Ex is related to the transverse scalar

wavefunction w as:

Ex ¼ E0ðA cos cxþ B sin cxÞwðy; zÞ; ð1Þ
where E0 represents the RF electric field peak ampli-

tude2 in the cavity, A and B are (field amplitude) con-

stants determined by the boundary conditions in x, the x
wavenumber c takes on different values in the different

dielectric regions, and the transverse wavefunction w in
the central section can be written as

wc ¼ sin gy cos k1z: ð2Þ
Here, the y wavenumber g is fixed by the TM conductive

boundary condition wjy¼Y =2 ¼ 0 as

g ¼ 2p=Y ; ð3Þ
while the axial wavenumber k1 depends on matching to

the dielectric end section. The other four field compo-

nents are derivable from the scalar potential according

to:

Et ¼
E0c

g2 þ k2
ðA sin cx� B cos cxÞrtw; ð4Þ

Ht ¼
iexE0

g2 þ k2
ðA cos cxþ B sin cxÞx̂x�rtw; ð5Þ

where x̂x represents a unit vector in the x-direction, rt

represents the transverse gradient, r� x̂xo=ox, and e
represents the dielectric constant. Note that Eqs. (4) and

(5) are applicable in any region. From Eq. (5), it can be

shown that the electric field amplitude E0 is related to

the magnetic field amplitude at the coordinate origin,

H0, by
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E0

�iH0

xeg
ðg2 þ k2Þ: ð6Þ

In the two x-region problem shown in Figs. 1b and

2a, which has one sample, we have in the sample (i.e.,

region 2, 0 < x < a), Eq. (1), with

A2 ¼ 1; ð7Þ

B2 ¼ 0; ð8Þ

Ex2 ¼ E0 cos c2x wc: ð9Þ
In the free space, region 1, a < x < X=2,

Ex1 ¼ E0C1 cos½c1ðX=2� xÞ�wc; ð10Þ
with C1 determined by the continuity of displacement at

x ¼ a. From Eqs. (9) and (10),

C1 ¼ ers cos c2a= cos½c1ðX=2� aÞ�; ð11Þ
where ers represents the relative dielectric constant of the
sample (the dielectric constant normalized to that of free

space). From Eqs. (1) and (11),

A1 ¼ C1 cosðc1X=2Þ; ð12Þ

B1 ¼ C1 sinðc1X=2Þ: ð13Þ
Imposing the continuity of oEx=ox across the sample

interface x ¼ a (which produces continuity of tangential

electric and magnetic field) using Eqs. (9) and (10) pro-
duces an interface relation between the x wavenumbers

c1 tan½c1ðX=2� aÞ� ¼ � c2
ers

tan c2a: ð14Þ

This equation is analogous to the interface relationships

derived in [5,8], but is different due to the polarization
of the electric field perpendicular to the dielectric

plane.

In the dielectric end section, the wavefunction reads

we ¼
cosðk1L=2Þ
sin k2d

sin gy sin½k2ðL=2þ d � zÞ�; ð15Þ

where k2 is the axial wavenumber in the end section. As
developed in [5,8] and recapped in Appendix A, the

wavefunctions are matched across z ¼ L=2, and conti-

nuity of ow=oz gives an interface relationship between k1
and k2,

k1 tanðk1L=2Þ ¼ k2 cot k2d: ð16Þ
The system of five equations and five ‘‘unknown’’

mode constants x, c1, c2, k1, and k2 is formed by Eqs.

(14) and (16) and completed with a dispersion relation

for each of the three different dielectric regions:

x2=c2 ¼ c21 þ g2 þ k21 ; ð17Þ
¼ ðc21 þ g2 þ k22Þ=ere; ð18Þ
¼ ðc22 þ g2 þ k21Þ=ers; ð19Þ

where ere refers to the relative dielectric constant of the

end section dielectric. The fields are expressed in terms
of these five mode constants. Effectively, by using Eqs.
(18) and (19), we are not accounting for sample exten-

sion into the dielectric end section. A brief discussion of

the end section thickness d in relation to the system of

equations is given in Appendix A. Explicit expressions

for the fields and the amplitude constants A and B are

given in Appendix B.

In the three-x-region problem shown in Figs. 1c and

2b, which has two samples separated by a distance 2b,
we have in the inner free space, region 3, 0 < x < b,

Ex3 ¼ E0 cos c1x wc; ð20Þ
where, since the dispersion relation in region 3 is iden-

tical to that of region 1, the result c3 ¼ c1 is used, which
represents the x-wavenumber in free space. In the sample

region 2, b < x < aþ b,

Ex2 ¼ E0C2 cos½c2ðX2=2� xÞ�wc; ð21Þ
with C2 determined by the continuity of displacement at

the sample interface x ¼ b. Here, X2 represents an

equivalent (complex) phase constant to be determined.

It is found from Eqs. (20) and (21) that

C2 ¼
cos c1b

ers cos½c2ðX2=2� bÞ� : ð22Þ

In the outer free space, region 1, aþ b < x < X=2,

Ex1 ¼ E0C1 cos½c1ðX=2� xÞ�wc; ð23Þ
with C1 determined by the continuity of displacement at

the sample interface x ¼ aþ b. From Eqs. (21) and (23)

C1 ¼ C2ers cos½c2ðX2=2� a� bÞ�= cos½c1ðX=2� a� bÞ�:
ð24Þ

Imposing continuity of oEx=ox across the sample in-

terfaces at x ¼ b and x ¼ aþ b, using Eqs. (20), (21), and
(23) combined with Eqs. (22) and (24), yields a pair of
interface equations that relate the three mode constants

c1, c2, and X2,

c1 tan c1b ¼ � c2
ers

tan½c2ðX2=2� bÞ�; ð25Þ

c1 tan½c1ðX=2� a� bÞ� ¼ c2
ers

tan½c2ðX2=2� a� bÞ�:

ð26Þ
The system of equations now contains six mode

constants, x, c1, c2, X2, k1, and k2, and is formed by Eqs.

(25), (26), and (16)–(19). Explicit expressions for the

amplitude constants A and B in each region along with

the fields are given in Appendix B, as well as appropriate

expressions for the four-x-region problem (three-sample

configuration) shown in Figs. 1d and 2c.

In all cases, the system of equations for the TE102

mode is obtained from the equations above by elimi-
nating Eqs. (16) and (18) from the system, setting

k1 ¼ p=L, and ignoring the fields in the end section. The

solution is exact for the TE102 mode for the case that the
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sample widths extend fully across the cavity to
y ¼ �Y =2.

The analytic field predictions and Q-values were

checked against Ansoft HFSS and agreement was

found. The Qs were within 0.5% over an order of mag-

nitude variation in sample widths for the case of the

TE102 mode, one-sample configuration.
2.3. Analytic model for limited sample

If the sample width is limited to y ¼ �Ys=2 where

Ys < Y , the primary effect is to cause the x-component of

electric field near the edge of the sample yK Ys=2 to

increase over what it would be if the sample extended

fully across the Y cavity dimension. This situation was

examined in detail with the aid of Ansoft HFSS 8.0.25.

When the sample extends fully across the cavity,
Ys ¼ Y , the x-component of the electric field inside the

sample Exi is reduced relative to the field outside the

sample Ex0 according to

Exi ¼ Ex0=ers ð27Þ
due to conservation of electric displacement. Here, the

relative dielectric constant is ers. Although Eq. (27) is

applicable to a dielectric slab in a constant external

electric field Ex0 oriented perpendicular to the planar

surface of the slab, Eq. (27) accurately describes the

relationship between Ex inside the sample and that
outside for the TE102 mode, despite the sinusoidal vari-

ation of the field in y.
For limited sample, HFSS observations of the fields

over a wide range of conditions and realistic sample

thicknesses revealed that Eq. (27) is also accurate several

sample thicknesses away from the sample edge,

yK Ys=2� 3a. Further HFSS observations led to the

conclusion that the electric field magnitude near the
sample edge y ¼ Ys=2 was always about double the value

farther inside the sample, yK Ys=2� 3a, given by Eq.

(27). This can be explained by considering the electro-

static field inside a dielectric cylinder with axis perpen-

dicular to x in a constant external field Ex0. The

relationship between the field inside the cylinder and

that outside of it is [12]:

Exi ¼
2Ex0

ers þ 1
; ð28Þ

where Ex0 represents the field far from the cylinder. (The

field inside the cylinder is uniform.) From Eq. (28), it

can be seen that the field is stronger inside the cylinder

by about a factor of two over that inside a flat cell. This

increase is caused by the continuity of tangential electric
field at the edges of the cylinder. In the actual TE102

limited sample case, in the limit a � Ys=2, the field Exi at

the edge of the plane y ¼ Y �
s =2 and at x ¼ 0 consistently

is surprisingly close to what was predicted by Eq. (28)

for a wide range of sample sizes. Apparently, the edge of
the flat cell, after rounding off the sharp corners, can be
thought of as approaching some reasonable fraction of a

cylinder. Moreover, it was observed that the field decays

approximately exponentially with (Ys � y) to a value

predicted by Eq. (27) over a characteristic distance equal

to about the sample plane half thickness a.
Parenthetically, it may be recalled that for a sphere,

the relationship analogous to Eq. (28) is

Exi ¼
3Ex0

ers þ 2
: ð29Þ

Consequently, in order for the field inside a dielectric

with ers > 1 to be comparable to that outside, most of

the dielectric interface must lie along the electric field, as

in case 1, the end section dielectric, or in case 2, the

sample of Fig. 1a.
According to these HFSS observations, the sample

edge enhancement of the electric field was empirically

modeled by multiplying the field expression for Exc given

by Eq. (B.1) inside the sample by

1
�

þ CEe�ðYs=2�yÞ=a�; ð30Þ
where the edge field enhancement factor CE, according

to Eq. (28) and the discussion above, should be about

two. We did not account for changes in the other field

components caused by this modification.
After including the effect of this enhanced Exc in the

expressions for the losses and field energy, the magni-

tude of the constant CE was adjusted until a match be-

tween the Q-value predicted by the analytic expressions

matched that predicted by Ansoft HFSS for a repre-

sentative sample size. The TE102 mode was used at

9.5GHz with a ¼ 0:1mm, Ys ¼ 0:4 in., and found to be

CE ¼ 2:27 for unloaded Q ¼ 6885. For this value of CE,
the unloaded Q predicted by the analytic theory was

within 1.5% of Ansoft HFSS when the sample thickness

was doubled. Agreement improved to 0.6% with the

sample thickness doubled and the width halved.

It should be pointed out that Ansoft HFSS did not

readily converge on a solution when the sample width

was limited. Interestingly, convergence was rapid and

automatic on the TE102 mode with the sample extending
fully across the cavity, which also has an exact analytic

solution. But when the sample was limited, the auto-

matic mesh refinement in Ansoft HFSS was not ade-

quate to give convergence, even after 20 iterations. In

order to get convergence, the mesh had to be manually

seeded to increase the mesh density near the sample

edge, y � Ys inside and outside the sample. This was

done after about five initial iterations. A subsequent set
of about five iterations produced stable fields and

Q-values. The manual seeding is time consuming and

labor-intensive.

In summary, the field energy and losses were ana-

lytically modeled for limited sample width by correcting

the x-component of the electric field near the sample
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edge according to Eq. (30) and integrating over the re-
duced sample width. The stored energy in vacuum was

also adjusted by integrating the value of the field just

outside the removed sample regions over the vacuum

regions no longer occupied by the limited sample.

2.4. Field integral expressions

In consideration of energy balance for time harmonic
fields in the presence of lossy dielectrics, e.g., Section

6.10 of [11], expressions were obtained for the stored

energy W and dissipated power Pl in the cavity in terms

of the preceding expressions for the fields [8]:

W ¼ Wv þ Wd þ Ws; ð31Þ
where

Wv ¼ 1
2
e0

Z
vacuum

E � E� dV ; ð32Þ

Wd ¼ 1
2
e0ReðerdÞ

Z
end dielectrics

E � E� dV ; ð33Þ

Ws ¼ 1
2
e0ReðersÞ

Z
sample

E � E� dV ; ð34Þ

and

Pl ¼ Pw þ Pd þ Ps; ð35Þ
where

Pw ¼ ð2rdÞ�1

Z
walls

ðn̂n�HÞ � ðn̂n�HÞ� dS; ð36Þ

Pd ¼ ReðxÞe0ImðerdÞ
Z
end dielectrics

E � E� dV ; ð37Þ

Ps ¼ ReðxÞe0ImðersÞ
Z
sample

E � E� dV : ð38Þ

In Eq. (36), r is the wall conductivity and the skin depth

d ¼ ðpfl0rÞ
�1=2

, where f ¼ x=2p. Further, integrals

representing the non-saturable and saturable signal
strengths were formed:

Su ¼ ðP 1=2
in =PlÞ

Z
sample

H �H� dV ; ð39Þ

Ss ¼ P�1=2
l

Z
sample

H �H� dV : ð40Þ

It is noted that gQ0 ¼ pfl0Su with P 1=2
in ¼ 1, where g

is the filling factor3 and Q0 is the unloaded Q. The loa-

ded Q when the cavity is matched is two times smaller.

In the non-saturable case, the input power is set to some
3 The conventional symbol g is used for filling factor here, even

though the same symbol is used for the y wavenumber. There should

be no ambiguity because whenever the filling factor context is used

elsewhere in this paper, the symbol g always appears as the product

gQ0.
value, say 1W, and the reference RF magnetic field
strength H0 cancels out of the expression. In the satu-

rable case, the input power Pin (¼ Pl) is adjusted to

achieve a fixed value of l0H0, say 1G.

The integrals were evaluated analytically with the

use of complex trigonometric identities such as

sin hðsin hÞ� ¼ 1=2 cos½2ImðhÞ� � 1=2 cos½2ReðhÞ�. An

example of the explicit expression for the integral Ps is
shown in Appendix C. Space constraints limit the dis-
play of the other evaluated integrals. The Q0 value is

given by

Q0 ¼ ReðxÞW =Pl: ð41Þ
Note that Q0 does not account for energies or losses in

the thin neglected region, for the one-sample configu-

ration, 0 < x < a, L=2 < z < L=2þ d, consistent with

the field expressions. Additional neglected regions exist

for multiple samples.

For purposes of comparison, the full wave calcula-

tions of all the preceding quantities were also found for
the standard TE102 mode. The reduced system of equa-

tions applicable to the TE102 mode is explained briefly at

the end of Section 2.2 and in Appendix A.
3. Results

The system of equations was solved using the

Mathematica 4.1 (Wolfram Research, 1999, Cham-

paign, IL) root solver with the desired operating fre-
quency, cavity dimensions, and sample size specified.

Calculations were carried out on a Compaq W8000

workstation with dual Intel Xeon 1.7GHz Pentium

processors. The operating frequency of the cavity with-

out sample was set at 9.500GHz. The dielectric con-

stants were taken from Von Hippel [13]: the dielectric

ends (in the case of the UF mode) were taken as quartz,

erd ¼ 3:78ð1þ 10�4iÞ and the sample was taken as water
at 25 �C, ers ¼ 55ð1þ 0:54iÞ. The conductivity of the

walls was that of copper, r ¼ 5:80� 107X�1m�1. In

Mathematica, the secant method was used with (com-

plex) initial guesses based on the analytic limits of the

equations with vanishing sample thickness. The sample

thickness was scanned starting from a very small value

and increasing. The results from the previous solution

were then used to form the initial guesses for the next
solution. With the resulting values of frequency, wave-

number, and phase constant from the solution, the ap-

propriate expressions for the fields and field integrals

were evaluated.

3.1. Fields

A strategy for maximizing signal is to minimize
sample losses, which is done by minimizing E in the

sample region(s). To accomplish this and to illustrate the
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constraints of the problem, several field plots for the
TE102 mode for optimum sample thickness are shown.

The operating frequency was 9.5GHz, cavity size

X ¼ 1:02 cm, Y ¼ 4:36 cm, L ¼ 2:29 cm, and sample

width Ys ¼ X . In all the field plots, the magnetic field

magnitude in the center of the cavity (the coordinate

origin) was normalized to 1A/m. Fig. 3a shows a plot of

the magnitude of electric field vs. y at x ¼ 0 and z ¼ 0 for

the standard E-field nodal plane orientation. The electric
field, which has only an x-component, increases linearly

at the same rate inside and outside the sample. The

electric field Ex, which is tangent to the surface, is con-

served across the sample interface. Fig. 3b shows the

analogous plot for the perpendicular orientation. This

plot is made at the location y ¼ 0 and z ¼ 0, where (now

the normal component) ExðxÞ ¼ 0. It is shown at this

location to illustrate that there is a tangential component
of electric field that behaves similarly and has a similar

magnitude to that of the standard orientation. At this

particular location, the field consists of Ey only, but at

other y and z locations, the field is made up of both Ey

and Ez. This tangential component of electric field

Et ¼ Eyŷy þ Ezẑz is due to the polarization charge on the
Fig. 3. TE102 spatial field profiles are shown on the right side. Dashed curves

vacuum space. On the left is a cavity stick drawing indicating the location of th

except (c). For (c), the electric field magnitude is shown as a function of z j
vacuum interface at a location y ¼ Ys=4 that is halfway between the sampl

description.
surfaces of the sample and the conservation of tangen-
tial H at the boundary. Away from y ¼ 0 and z ¼ 0, the

component normal to the surface, Ex, is also found,

which is reduced inside the sample by the ratio of the

dielectric constants inside and outside the sample, as

shown by Eq. (27). In Fig. 3c, the electric field magni-

tude at a location x ¼ a, y ¼ Ys=4 is shown inside and

outside the sample. On the left side of the plot, the

electric field in the sample is due to Ex and Ey , while on
the right side, there is no Ex. Because the tangential

electric field components play such a large role in dis-

sipation, Figs. 3d and e show plots of Ey (at y ¼ 0, z ¼ 0)

for the two- and three-sample region cases. Perhaps

surprisingly, each sample region has a tangential electric

field null inside. In general, these nulls are not located in

the center of each sample region, but rather move

around with sample placement. Here, the sample spac-
ing b was adjusted to maximize the signal, which also

minimizes the loss by placing the null as close to the

center of each sample region as possible. As will be

discussed in the following section, these nulls are the

reason multiple sample regions produce an enhanced

signal in the perpendicular orientation. Fig. 3f shows the
represent the field magnitude inside the sample; solid lines are for the

e line of the respective field plot. All plots start at the coordinate origin

ust inside x ¼ a� (dashed) and just outside x ¼ aþ (solid), the sample/

e center y ¼ 0 and sample edge y ¼ Ys=2. See Section 3.1 for further
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corresponding magnitude of magnetic field vs. x for the
three-region case. As expected, it is nearly constant

across the cavity.

3.2. Loss and signal behavior

Sample losses can be grouped into three types: (1)

those due to electric field tangential to the sample sur-

face; (2) those due to electric field normal to the sample
surface; and (3) those due to electric field enhancement

close to the edge of the limited sample width. Type 1 loss

is proportional to the cube of the sample thickness, a3,
because this component of E has a null inside the sample

and grows linearly with sample thickness. This type of

loss is the only one present in the standard electric field

nodal plane orientation. It accounts for the rapid de-

crease in signal for sample thicknesses larger than op-
timal, as shown in the dashed curve of Fig. 4a, and is

present in the perpendicular orientation as well, the solid

curves of Fig. 4a. As was pointed out in Section 3.1,

such a null surprisingly occurs for every separate sample

region. The exact location of this null depends on the

sample placement, but in any case, type 1 loss can be

reduced by reducing the sample thickness and increasing

the number of layers. This is seen in the increase in
signal strength with number of samples at a given total
Fig. 4. (a) TE102 non-saturable sample EPR signal strength as a

function of total sample thickness for a single sample in standard

electric field nodal plane (dashed) and perpendicular (solid) orienta-

tions. The numerical label indicates the number of sample regions for

the perpendicular orientations. Total sample thickness is 2a for the

one- and two-sample cases and 3a for the three-sample case (see Fig.

2). Cavity dimensions correspond to X-band, f ¼ 9:5GHz,

X ¼ 1:02 cm, Y ¼ 2:29 cm, L ¼ 4:36 cm, and the sample width Ys ¼ X .

(b) TE102 saturable sample EPR signal strength as a function of total

sample thickness. Cavity dimensions, symbols, and line type are the

same as (a).
sample thickness shown in Fig. 4a. It is also illustrated
in the increase in Q with number of sample regions in

Fig. 5a. When type 1 loss is negligible, the optimum

sample thickness is theoretically without limit, as for the

cylindrical capillary [4]. This is also hinted at in Figs. 4a

and 5a where the signal and Q are seen to drop more

slowly with increasing thickness for the three-sample

case.

Type 2 loss is directly proportional to the sample
thickness because the normal component of E, (Ex), is

relatively constant across the sample thickness. Type 2

loss is unique to the perpendicular orientation. This loss

can be reduced in two ways. The first is by limiting the

sample width, Ys, so that the sample does not extend

very far into the electric field. The electric field varies

sinusoidally in y and goes to zero at the cavity walls

y ¼ Y =2. Consequently, this term increases as Y 3
s for

Ys < Y =4. The second way to limit the size of this term is

by having a sample with a large magnitude of relative

dielectric constant. Since the electric field is inversely

proportional to er inside the sample, the loss is pro-

portional to e�2
r . For the cases depicted in Figs. 3 and 4,

type 2 loss is considerably smaller than type 1 loss at

optimum sample thicknesses.

For reasons discussed in Section 2.3, type 3 loss,
which was speculated to be potentially important in the

perpendicular orientation [9], is found to be only im-

portant when the sample width becomes comparable to

or smaller than the sample thickness.

Consequently, for the two- and three-sample cases,

losses are minimized by adjusting the sample spacing b
so that the tangential electric field node is centered in

each sample. It is found that if the sample is close to the
Fig. 5. (a) Unloaded Q0 as a function of total sample thickness cor-

responding to Fig. 4. (b) RF magnetic field strength as a function of

total sample thickness corresponding to (a).
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cavity wall, the node is positioned close to the wall and
the losses are about four times larger than if the node is

in the center of the sample region. In the two-sample

case, the nodes are centered when each sample is located

near y ¼ �X=2, halfway between the center and the

walls of the cavity. For the three-sample case, the nodes

are centered when the samples are clustered very close

together in the center of the cavity. The difference be-

tween the two cases is caused by the near reversal in sign
of the tangential electric field across a sample region.

From these observations, it was concluded that for

many flat cells, optimal sample placement for an even

number of sample regions is to form two clusters cen-

tered on the midpoints between the center and walls.

Conversely, optimal placement for an odd number of

flat cells is to cluster them all in the center of the cavity.

Spacing of individual cells from each other should be
made as small as practicable.

3.3. Signal strength: one-, two-, and three-sample regions

Following the theory of sensitivity by Feher [3], the

EPR signal for a reflection microwave bridge employing

a linear microwave detector (i.e., sensitive to the mi-

crowave voltage rather than the microwave power) can
be written as

S ¼ 1
2
vgQ0P

1=2
in ; ð42Þ

where v is the RF susceptibility. If the sample cannot be

saturated with the available microwave power, Pin and v
are constants and a calculation of the gQ0 product

permits theoretical comparison. Results of this calcula-

tion are shown in Fig. 4a, varying the sample thickness.

The corresponding (unloaded) Q0 values are shown in

Fig. 5a. Examples of samples of this class are Mn2þ or

Cu2þ in aqueous solvent. It can be seen from Fig. 4a that

the signal strength for the single sample perpendicular

orientation at optimum sample thickness drops slightly
from the standard nodal plane configuration (dashed

line) and that the optimum sample thicknesses are the

same. These results are consistent with experimental

results obtained by Hyde [9] and Eaton and Eaton [10].

A substantial benefit is obtained by using two- and

three-sample regions as indicated, although more total

sample is needed to achieve optimum signal strength.

From Fig. 5a it is apparent that the signal strength in-
crease is accompanied by an increase in Q0. It is specu-

lated that the reason these multiple sample results were

not observed by Hyde, and Eaton and Eaton, is that the

sample placement and thickness were not optimized.

Referring to Eq. (42), consider the case where the

sample can be saturated and the saturation parameter in

the denominator of the term v becomes important. To

compare aqueous cell geometries for this class of sam-
ples, P 1=2

in can be readjusted in all comparisons such that

the RF field at the sample remains constant. Thus from
an engineering perspective, for non-saturable samples,
Pin is held constant and for saturable samples, H is held

constant. Results of aqueous sample cell calculations are

presented in Fig. 4b. Examples of such samples are spin

labels and free radicals in aqueous solvent. Aqueous

saturable samples, particularly spin labels, are much

more commonly used in EPR spectroscopy than aque-

ous non-saturable samples.

It is noted from Fig. 4 that the optimum flat cell
thickness is larger for saturable than for non-saturable

samples. It is apparent also from Fig. 4b that the falloff

in sensitivity at larger sample thicknesses is very gradual.

The gradual falloff may be important for EPR in tissue

samples where the sample thickness is difficult to con-

trol. This can be compared to the behavior of Q0 shown

in Fig. 5a. These figures may be useful to the EPR in-

strument designer in situations where it is desirable to
trade signal intensity for lower Q-value, e.g.: (i) domi-

nant source phase noise, (ii) dead time problems in pulse

EPR, (iii) ELDOR or other experiments where more

than one microwave frequency is incident on the sample,

or (iv) resonator sample geometries that are prone to

microphonics.

Similarly, Fig. 5b shows the peak rotating-frame RF

magnetic field at the coordinate origin as a function of
sample thickness. This figure provides information to

the EPR spectroscopist about whether the sample of

interest fits the non-saturable or the saturable condition.

It can also be used to set initial conditions for com-

parison of uniform field resonators with the conven-

tional TE102 resonator.
3.4. Signal strength and Q0: many sample regions

These results can be used to form a theory that pre-

dicts the signal strength and Q0 for any number n
samples.

3.4.1. Non-saturable

Based on the scaling of Eq. (39) and Eqs. (35)–(38)

with flat cell sample thickness

ðgQ0Þ1 ¼
C1a

1þ C2aþ C3a3
; ð43Þ

where C1, C2, and C3 are constants and a represents the

sample thickness. The quantity C1a represents the ratio

of pfl0 times the magnetic field energy in the sample to

the power loss arising from the cavity walls Pw (plus

dielectric end section losses Pd in the case of the TEU02

mode), while C2a represents the ratio of power loss in

the sample due to the normal component of electric field
PsEx (type 2 loss, Section 3.2) to Pw (þPd), and the

quantity C3a represents the ratio of power loss in the

sample due to the tangential components of electric field

(type 1 loss, Section 3.2) to Pw (þPd). Note that C2 is zero

for the sample oriented in the electric field nodal plane.
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The optimum sample thickness can be found from Eq.
(43) by differentiation,

a1opt ¼ ð2C3Þ�1=3
: ð44Þ

Consequently, the optimum sample thickness is in-

dependent of C2, which implies that it is the same for

samples parallel or perpendicular to the electric field

nodal plane. This result is consistent with the results of

Fig. 4a. At the optimum sample thickness

ðgQ0Þ1max ¼
C1a1opt

3=2 þ C2a1opt
: ð45Þ

If the sample is divided into n sample regions and it is

assumed that the field behaves similarly in each of these

regions, we have, based on the scaling properties of each

of the constants,

gQ0 ¼
nC1ða0=nÞ

1þ nC2ða0=nÞ þ nC3ða0=nÞ3
;

¼ C1a0

1þ C2a0 þ ðC3=n2Þa03
; ð46Þ

where a0 represents the total sample thickness of the
multiple sample region (the sum of the individual sample

thicknesses). Comparing Eq. (46) with Eq. (43), the

optimum total sample thickness is

a0opt ¼ n2=3a1opt; ð47Þ

and the signal enhancement ratio for multiple flat cells

is

ðgQ0Þnmax

ðgQ0Þ1max

¼
3=2 þ C2a1opt

3=2n�2=3 þ C2a1opt:
ð48Þ

It was verified that the predictions of Eqs. (47) and

(48) are within 5% of the results of the two- and three-

sample region curves shown in Fig. 4. Discrepancies are

attributable to non-ideal sample placement with respect
to the electric field node in each sample. For the TE102

mode and single sample (in perpendicular orientation) in

Figs. 3–5, it was found from the Mathematica calcula-

tions that the quantity C2a1opt ¼ 0:257. With this value,

Eq. (48) implies that a factor of 6.85 improvement in

signal strength, at most, can be found for a large number

of samples (n ! 1) separated by thin insulating re-

gions. This result is new. The smaller the quantity
C2a1opt, the larger the benefit from breaking up a single

flat cell into multiple sample regions. This result is only

valid for the case of sample orientation perpendicular to

the electric field nodal plane. For standard orientation,

there is no benefit to breaking up the flat cell,4 due to

continuity of tangential electric field.
4 Unless, of course, the flat cell is divided along x, the direction

parallel to the tangential electric field, in which case it is the

perpendicular orientation.
The quantity C2a1opt has the form

C2a1opt ¼
PsEx

PwðþPdÞ
¼ ReðxÞe0ImðersÞ

PwðþPdÞ

�
Z
opt sample

ExE�
x dV � f ImðersÞ

jersj2
; ð49Þ

whereEx represents the component of electric field normal

to the sample surface. Consequently, the quantity C2a1opt
can always be made smaller by decreasing the sample

width, Ys, so that more of the sample is near the electric

field nodal plane, but this comes at the expense of signal

strength. There can be even greater advantage in using the
perpendicular orientation at S-band or L-band, because

all three of the quantities f , ImðersÞ, and jersj work to di-

minish the quantity C2a1opt at lower frequencies.
A realistic estimate of the signal enhancement from

multiple flat cells at X-band was made by limiting the

number of samples based on the use of reasonably ma-

chinable thicknesses and by limiting the size of the stack

of flat cells to fill only a fraction a0opt=X of the cavity
dimension X , which, when combined with Eq. (47), gives

nmax ffi a0opt=a1opt
� �3=2

; ð50Þ

where now a0opt is chosen to fill some fraction of X .5 The
fraction a0opt=X should be limited to about 0.5, based on

observations of the electric field nulls inside the sample

regions for the two- and three-sample configurations.

The closer the samples are placed to a vacuum electric
field null, whether due to symmetry or due to the con-

ducting wall, the closer the sample null becomes to the

vacuum null. The conducting wall null seems to draw

the sample null toward it, although never out of the

sample. In the limit where the sample null is on

the sample boundary (which occurs for a sample on the

cavity wall), the type 1 loss is quadruple that of a

sample-centered null.
The signal strength for multiple samples was calcu-

lated based on Eqs. (45), (47), (48), and (50), and the

single sample Mathematica model of Section 2. This

signal strength was calculated as a function of sample

width Ys, for cavity fill fractions a0opt=X of 0.2, 0.4, and

0.6. Signal strength was generally slowly varying with

sample width, but in all cases a peak was evident. Re-

sults corresponding to the peak signal are shown in
Table 1. Note that a factor of 6.3 larger signal strength

over standard orientation is obtained with many sam-

ples and a smaller sample width. One must be very

clever, however, to create a sample holder that can

house 73 sample layers in 0.6 cm. If fewer samples are
5 Finite sample spacing is not explicitly accounted for here. But

since its effect is immaterial, it is possible to simply reduce a0opt to

accommodate it. A dielectric sample holder will not influence the

electric field strength inside the aqueous sample as long as it is thinner

than the individual sample thickness a0opt=n.



Table 1

TE102 optimum multiple flat-cell properties

Total sample

thickness

Sample

width

Sample

number

Individual sample

thickness

Signal

strengtha

Signal ratioa over

standard orientation

Q0

a0opt (cm) (¼ a0opt=X ) Ys (cm) n a0opt=n (mil) ðgQ0Þnmax ðgQ0Þnmax=ðgQ0Þ1E nodal plane

Non-saturable

0.6 0.55 73 3.3 266 6.3 3150

0.4 0.60 41 3.9 213 5.0 3400

0.2 0.85 17 4.7 144 3.4 3100

Saturable

0.6 0.80 27 8.8 120 6.0 1000

0.5 0.82 19 9.2 109 5.5 1000

0.4 0.90 15 10.0 94 4.7 1000

a For the saturable case, the signal strengths should read gQ0P
1=2
in .
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used, the optimum samples become slightly thicker and

wider, with a factor of two sacrifice in signal strength at

n ¼ 17. Also shown in Table 1 is the Q0 corresponding

to the signal strength. The Q0 values for multiple flat

cells were found by following a similar argument to that

used in finding gQ0. The Q0 at optimum multiple flat cell
thickness, a0opt, ðQ0Þnmax, is related to the unloaded

cavity Q0 with no sample, Q0u, by Eq. (51):

ðQ0Þnmax ¼
Q0u

ð3=2Þ þ C2a1optn2=3
: ð51Þ

In all cases, the ðQ0Þnmax is about 1/3 the unloaded

cavity Q0u, which is 8980. This result is different than the
2/3 value predicted by Wilmshurst [4] for the standard

orientation. The difference is evident in Eq. (51), where

the 2/3 value is only obtained in the limit C2aopt1 ! 0.

3.4.2. Saturable

The analysis of the previous section can be repeated

for saturable samples. For the saturable case

ðgQ0P
1=2
in Þ1 ¼

C1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2aþ C3a3

p ; ð52Þ

where the same symbol definitions apply as in the non-

saturable case. Here, the optimum sample thickness,

found from Eq. (52) by differentiation, is the only real

root of the cubic equation

2þ C2a1opt � C3a31opt ¼ 0: ð53Þ

The analytic solution to this equation was found and
evaluated by Mathematica and is the analog to Eq. (44).

Extending these results to n sample regions, it was found

that

gQ0P
1=2
in

� �
nmax

¼
C1a0optffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2a0opt þ ðC3=n2Þa03opt
q ; ð54Þ

where the optimum total sample thickness a0opt is found
from

2þ C2a0opt �
C3

2
a03opt ¼ 0; ð55Þ
n

and the constants C2 and C3 are found from the single

sample power loss calculations. The signal enhancement

ratio for multiple flat cells is

gQ0P
1=2
in

� �
nmax

gQ0P
1=2
in

� �
1max

¼
a0opt
a1opt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2a1opt þ C3a31opt
1þ C2a0opt þ C3a03opt=n

2

s
; ð56Þ

while the corresponding Q0 value is given by

ðQ0Þnmax ¼
Q0u

1þ C2a0opt þ C3a03opt=n2
: ð57Þ

Sample widths were again limited by the cavity di-

mension X , and the signal strength was scanned as a

function of sample width. It was found that the signal
strength continued to increase slowly with sample width,

unlike the non-saturable case. Consequently, the nu-

merical results shown in Table 1 are limited not by peak

signal strength, but by limiting Q0 to a practical bridge-

limited maximum value of 1000 (loaded Q 500). It can be

seen that the enhancement ratios over the standard

orientation are comparable to the non-saturable case,

whereas the sample thicknesses are about 21
2
times larger

and fewer samples are required. Sample widths are

about double that of the non-saturable case.

3.5. Frequency shift due to flat cell assemblies

The change in resonant frequency of the cavity due to

the relatively large amount of sample required to pro-

duce the signal enhancement discussed in Section 3.4 can
be estimated from [14]

f � f0
f

¼
�
R
V0
ðe� e0ÞE � E�

0 dVR
V0
e0E � E�

0 dV
: ð58Þ

This is an exact expression, which was derived by con-

sidering the frequency and fields in an enclosed con-

ducting reference cavity of volume V0 and dielectric
(subscript 0) and new frequency and fields in the pres-

ence of a new dielectric region e inside the cavity (no

subscript). When the dielectric constant is complex, the

frequency shift predicted by Eq. (58) is complex.
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In general, the real and imaginary parts of the fre-
quency are related to the cavity Q by [15]

Q0 ¼
Reðf Þ
2Imðf Þ : ð59Þ

Now consider a standard sample oriented in the electric

field nodal plane. When the sample is very thin, the

electric field inside the sample E ¼ E0, the electric field

without the sample present, due to continuity of the

tangential electric field across the sample interface.

Therefore, Eq. (58) may be used to relate the ratio of

real and imaginary parts of the frequency shift to real

and imaginary parts of the sample relative dielectric
constant

Reðf0 � f Þ
Imðf Þ

� �
parallel

¼ Reðers � 1Þ
Imðers � 1Þ : ð60Þ

For water at 9.5GHz (see Section 3), this equation

predicts a ratio of 1.818. This value was confirmed by

the analytic model (Appendix A). As the sample thick-

ness increases, this ratio decreases to about 1.77 at op-

timum sample thickness due to the electric field phase

change through the sample (see Eq. (58)). In combining
this result with Eq. (59) and factoring out wall losses, we

predict a real frequency shift (due to sample alone) of

about 1.77(9.5GHz)/2/[9000/(3=2� 1)]ffi 0.47MHz. The

quartz sample holder has a much larger effect. This

number has been confirmed using the analytic model as

well as experimentally.

For the perpendicular orientation when the sample is

very thin, the electric field in the sample is primarily
normal to the sample surface plane. Continuity of nor-

mal displacement across the sample interface predicts an

electric field in the sample E ¼ E0=ers. Substituting this

into Eq. (58) gives

Reðf0 � f Þ
Imðf Þ

� �
perpendicular

¼ Reð1� 1=ersÞ
Imð1� 1=ersÞ

: ð61Þ

For water at 9.5GHz, this equation predicts a ratio

of 129.2, which also holds for multiple samples. This

value was confirmed by the analytic model (Section 2.2
and Appendices B and C) for one-, two- and three-

sample regions for sample extending fully across the

cavity Y dimension. As the sample thickness increases,

this ratio decreases to 60 (one sample), 87 (two samples),

and 107 (three samples) at optimum sample thickness.

The decrease is due to a combination of the phase

change of the electric field through the samples and the

presence of the electric field component tangential to the
sample surface (see Eq. (58)). These effects are more

pronounced when the sample is limited in the cavity Y
dimension, Ys < Y , because more of the sample lies near

the electric field nodal plane. Consequently, the ratio is

smaller for limited sample, Ys < Y .
These results may be used to predict an upper limit on

the real frequency shift due to a large number of sam-
ples. Using the results of Table 1, we estimate a fre-
quency shift due to sample alone for the non-saturable

n ¼ 73 case to be 129(9.5GHz)/2/[9000/(9000=3150� 1)]

ffi 126MHz. For saturable cases, we obtain a shift of

545MHz. For reasons outlined above, this frequency

shift is likely to be reduced by more than 50% due to the

thicker sample regions and for limited sample. Never-

theless, this shift is within the usual 10% tuning range of

X-band EPR bridges.
In practice, the sample holder may cause an even

larger frequency shift than the aqueous sample, de-

pending on the volume of sample holder in regions of

appreciable electric field. One may treat the effect of the

sample holder in the same manner as the sample was

treated using Eq. (58). Rexolite may prove advanta-

geous over quartz due to the smaller dielectric constant.
3.6. TEU02 mode

For the UF mode, it was found that the signal

strength behaves similarly to the properties found in [8].

The multiple sample analysis of Section 3.4 carries over

to the U02 mode without modification. Therefore, the

signal enhancement due to multiple samples is similar

for the U02 mode. It was found that the quantity C2a1opt
was about 5% larger for the TEU02 of the same cavity L,
X , and sample size, than the TE102 of Figs. 1–5. This is

caused by the more rapid electric field increase away

from the electric field nodal plane caused by the smaller

cavity dimension Y ¼ c=f . The larger C2a1opt implies a

marginally smaller U02 signal enhancement factor for

multiple flat cells. More significantly, the RF magnetic

field has a narrower sinusoidal peak at the cavity center
also caused by the smaller Y . This produces a smaller

signal strength. The ratio of sample magnetic field for

the U02 to the 102 due to this effect is given byR
sample

H �H� dV
� �

U02R
sample

H �H� dV
� �

102

¼
1þ sinð2pYs=Y Þ

2pYs=Y

1þ sinð2pYs=Y102Þ
2pYs=Y102

: ð62Þ

This quantity varies from 0.95 at Ys ¼ 0:55 cm to 0.86 at

Ys ¼ 1:0 cm.The combined effects reduce the signal for the

U02 mode for the single sample in perpendicular orien-

tation to about 89% of its value for the 102 mode for

Ys ¼ 1:0 cm. This is true even though the signal in stan-

dard orientation is 10% higher for the U02 than for the
102. The signal reduction is less severe for smaller sample

widths. This effect is manifest in a drop in signal strength

between the sample in standard versus perpendicular

orientation. This can be more than overcome by using

more sample along the uniform field dimension.

Qualitatively, sensitivity benefits of the UF mode

over the cosine mode arise from the following factors [8]:

(i) the dimension Y is 1.5 times smaller than in the
standard cavity, improving the filling factor; (ii) the flat
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cell thickness is optimum at every point along L; and (iii)
the area over which the electric field is zero, the XL
product, is unrestricted.
4. Conclusions

An analytic solution of the Maxwell equations for

aqueous flat cells in rectangular cavities has led to the
prediction of a factor of 3–6 times X-band EPR signal

enhancement for an assembly of many flat cells oriented

perpendicular to the electric field nodal plane. Greater

enhancement is expected at lower operating frequencies.

Analytic solutions were carried out and then numerically

evaluated using modern computational tools including

Mathematica. Observation of the predicted fields led to

classification of three distinct types of sample loss mech-
anisms, which led to sample designs that minimized each

loss type. The resulting EPR signal enhancement is due to

the presence and centering of a tangential electric field

node within each individual sample region. These obser-

vations carry over to uniformfieldmodes, a relatively new

class of microwave cavities for use in EPR spectroscopy

developed in this laboratory. Based on this analysis, a

practical multiple flat-cell design was proposed consisting
of a large number of thin sample regions separated by thin

insulating septa. The sample regions should be clustered

in the center of the cavity (for an odd number of samples)

andof a thickness that depends on the sample number and

whether the sample is saturable or non-saturable. Reso-

nant frequency shift due to the presence of the relatively

large amount of required sample was also analyzed and is

manageable.
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Appendix A. Cases 1 and 2

For the standard orientation with the sample in the

electric field nodal plane, a TM mode transverse to x in

Fig. 1a is found, and the corresponding transverse scalar
wavefunctions in the central and end sections can be

written, respectively, as

wc ¼ Exc ¼
�ixl0H0

g
ðA sin gy � B cos gyÞ cos k1z; ðA:1Þ

we ¼ Exe ¼
�ixl0H0

g
cosðk1L=2Þ
sin k2d

� ðA sin gy � B cos gyÞ sin½k2ðL=2þ d � zÞ�: ðA:2Þ
Here, the same variable definitions apply as in the main
text, while A and B are constants that are determined by

the boundary conditions in y. The transverse wave-

number g takes on two different values inside (g2) and
outside (g1) the sample. The wavefunctions have already

been matched across the dielectric interface between

central and end sections at z ¼ L=2. The fields can be

derived from these wavefunctions through Eqs. (4) and

(5) in the limits g ! 0, A ! 0, and B ! 1. The latter two
conditions must be applied to Eq. (5), since the con-

stants A and B for the present orientation have already

been incorporated into Eqs. (A.1) and (A.2).

Accordingly, the explicit expressions for the other

field components in the central and end sections, re-

spectively, are

Hyc ¼
H0k1
g

ðA sin gy � B cos gyÞ sin k1z; ðA:3Þ

Hye ¼
H0k2
g

cosðk1L=2Þ
sin k2d

ðA sin gy � B cos gyÞ

� cos½k2ðL=2þ d � zÞ�: ðA:4Þ

Hzc ¼ H0ðA cos gy þ B sin gyÞ cos k1z; ðA:5Þ

Hze ¼ H0

cosðk1L=2Þ
sin k2d

ðA cos gy þ B sin gyÞ

� sin½k2ðL=2þ d � zÞ�: ðA:6Þ

In imposing continuity of ow=ozjz¼L=2, an interface

equation relating the axial wavenumbers k1 and k2
originally derived in [5] is obtained

k1 tanðk1L=2Þ ¼ k2 cot k2d: ðA:7Þ

If the sample is 0 < y < a (viz. region 2) and free

space a < y < Y =2 (region 1), for the RF magnetic field

amplitude at the coordinate origin to be H0, the ampli-

tude constants are given by

A2 ¼ 1; ðA:8Þ

B2 ¼ 0: ðA:9Þ
Imposing continuity of w across y ¼ a and the con-

ductive boundary condition wjy¼Y =2 ¼ 0, it can be found
that

A1 ¼ cos g2a cosðg1Y =2Þ= cos½g1ðY =2� aÞ�; ðA:10Þ

B1 ¼ cos g2a sinðg1Y =2Þ= cos½g1ðY =2� aÞ�; ðA:11Þ
which are equivalent to the forms reported in [8]. In

imposing continuity of ow=oyjy¼a, the sample interface

equation relating the transverse wavenumbers g1 and g2,
also derived in [8], is obtained

g2 cot g2a ¼ �g1 cot g1ðY =2� aÞ: ðA:12Þ

The system of five equations and five unknowns is

formed by Eq. (A.7), (A.12), and completed with a
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dispersion relation for each of the three different
dielectric regions:

x2=c2 ¼ g21 þ k21 ; ðA:13Þ
¼ ðg21 þ k22Þ=ere; ðA:14Þ
¼ ðg22 þ k21Þ=ers; ðA:15Þ

where the subscript r refers to the relative dielectric
constant, the subscript e refers to the dielectric end, and

s refers to the sample. The end section dielectric thick-

ness d required to produce a uniform field in the central

section can be found by solving the system of equations

with k1 ¼ 0 and solving for d. The corresponding

thickness without sample can be found by setting k1 ¼ 0

in Eqs. (A.7), (A.13), and (A.14), yielding

d ¼ c

4f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ere � 1

p : ðA:16Þ

The system of equations for the TE102 mode is ob-

tained from these by eliminating Eqs. (A.7) and (A.14)

from the system, setting k1 ¼ p=L, and ignoring the

fields in the end section. Then k2 becomes arbitrary, and,

in the limit of zero sample thickness, Y ¼ ½f 2=c2

�ð2LÞ�2��1=2
.

A2 ¼ cosðc2X2=2Þ cos c1b= cos½c2ðX2=2� bÞ�; ðB:17Þ
Appendix B. Field expressions for sample perpendicular
to electric field nodal plane

Field expressions below are written in terms of the

amplitude constants A and B, and the mode constants x,
c, k1, and k2 (g is given by Eq. (3)). In general, the fields

and the constants A and B take on the subscripts cor-

responding to the dielectric region number, starting at 1

in the outer region, as shown in Fig. 2, and explained in
the beginning of Section 2.2. Our intent is to follow the

free space x-wavenumber c1 into the end sections, but

not to consider the presence of the sample in the end

section. Thus, the variable c takes on the subscript 2 in

the sample region(s) in the central section only, and

takes on the subscript 1 everywhere else. The field so-

lutions in the end sections over the x-coordinates that

are occupied by sample in the central section are ig-
nored. The applicable system of equations to solve,

which yield the values of the ‘‘unknown’’ mode con-

stants x, c1, c2, (X2, X3), k1, k2 as well as the expressions
for the amplitude constants A and B, are indicated in the

following respective subsections.

Exc ¼
�iH0 g2 þ k21

� �
xeg

ðA cos cxþ B sin cxÞ sin gy cos k1z;

ðB:1Þ

Exe ¼
�iH0ðg2 þ k22Þ

xeg
cosðk1L=2Þ
sin k2d

ðA cos cxþ B sin cxÞ

� sin gy sin½k2ðL=2þ d � zÞ�; ðB:2Þ
Eyc ¼
iH0c
xe

ðA sin cx� B cos cxÞ cos gy cos k1z; ðB:3Þ

Eye ¼
iH0c
xe

cosðk1L=2Þ
sin k2d

ðA sin cx� B cos cxÞ

� cos gy sin½k2ðL=2þ d � zÞ�; ðB:4Þ

Ezc ¼
�iH0ck1
xeg

ðA sin cx� B cos cxÞ sin gy sin k1z; ðB:5Þ

Eze ¼
�iH0ck2
xeg

cosðk1L=2Þ
sin k2d

ðA sin cx� B cos cxÞ

� sin gy cos½k2ðL=2þ d � zÞ�; ðB:6Þ

Hyc ¼
H0k1
g

ðA cos cxþ B sin cxÞ sin gy sin k1z; ðB:7Þ

Hye ¼
H0k2
g

cosðk1L=2Þ
sin k2d

ðA cos cxþ B sin cxÞ

� sin gy cos½k2ðL=2þ d � zÞ�; ðB:8Þ

Hzc ¼ H0ðA cos cxþ B sin cxÞ cos gy cos k1z; ðB:9Þ

Hze ¼ H0

cosðk1L=2Þ
sin k2d

ðA cos cxþ B sin cxÞ

� cos gy sin½k2ðL=2þ d � zÞ�; ðB:10Þ
B.1. One-sample equations

Taking free space a < x < X=2 (region 1), and sample
0 < x < a (region 2), the system of equations for the

mode constants x, c1, c2, k1, k2 is given by Eqs. (14),

(16)–(19) and the amplitude constants are given by

A2 ¼ 1; ðB:11Þ

B2 ¼ 0; ðB:12Þ

A1 ¼ cosðc1X=2Þ cos c2a= cos½c1ðX=2� aÞ�; ðB:13Þ

B1 ¼ A1 tanðc1X=2Þ: ðB:14Þ
B.2. Two-sample equations

Taking the outer free space region aþ b < x < X=2
(region 1), the sample b < x < aþ b (region 2), and the

inner free space region 0 < x < b (region 3), the system
of equations for the mode constants x, c1, c2, X2, k1, k2 is
given by Eqs. (25), (26), and (16)–(19), and the ampli-

tude constants are given by

A3 ¼ 1; ðB:15Þ

B3 ¼ 0; ðB:16Þ
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B2 ¼ A2 tanðc2X2=2Þ; ðB:18Þ

A1 ¼ A2 cosðc1X=2Þ cos½c2ðX2=2� a� bÞ�
= cosðc2X2=2Þ= cos½c1ðX=2� a� bÞ�; ðB:19Þ

B1 ¼ A1 tanðc1X=2Þ: ðB:20Þ

B.3. Three-sample equations

Taking the outer free space region aþ b < x < X=2
(region 1), the outer sample region b < x < aþ b (region

2), the inner free space region a=2 < x < b (region 3),

and the inner sample region 0 < x < a=2 (region 4), the

system of equations for the mode constants x, c1, c2, X2,
X3, k1, k2 is given by

c1 tan½c1ðX3=2� a=2Þ� ¼ � c2
ers

tanðc2a=2Þ; ðB:21Þ

c1 tan½c1ðX3=2� bÞ� ¼ c2
ers

tan½c2ðX2=2� bÞ�; ðB:22Þ

c1 tan½c1ðX=2� a� bÞ� ¼ c2
ers

tan½c2ðX2=2� a� bÞ�;

ðB:23Þ

with Eqs. (16)–(19) and the amplitude constants are

given by

A4 ¼ 1; ðB:24Þ

B4 ¼ 0; ðB:25Þ

A3 ¼ cosðc1X3=2Þ cosðc2a=2Þ= cos½c1ðX3=2� a=2Þ�;
ðB:26Þ

B3 ¼ A3 tanðc1X3=2Þ; ðB:27Þ

A2 ¼ A3 cosðc2X2=2Þ cos½c1ðX3=2� bÞ�
= cosðc1X3=2Þ= cos½c2ðX2=2� bÞ�; ðB:28Þ

B2 ¼ A2 tanðc2X2=2Þ: ðB:29Þ

A1 ¼ A2 cosðc1X=2Þðcos½c2ðX2=2� a� bÞ�
= cosðc2X2=2Þ= cos½c1ðX=2� a� bÞ�; ðB:30Þ

B1 ¼ A1 tanðc1X=2Þ: ðB:31Þ
Appendix C. Analytic expression for integral Ps

Evaluation of Eq. (38) using Eqs. (B.1), (B.3), and
(B.5) with the limited sample model discussed in Section

2.3 yields

Ps ¼ Psgða ! 0; b ! a; c ! c2;A ! A2;B ! B2Þ ðC:1Þ

for the one-sample configuration,
Ps ¼ Psgða ! b; b ! aþ b; c ! c2;A ! A2;B ! B2Þ
ðC:2Þ

for the two-sample configuration, and

Ps ¼ Psgða ! 0; b ! a=2; c ! c2;A ! A4;B ! B4Þ
þ Psgða ! b; b ! aþ b; c ! c2;A ! A2;B ! B2Þ;

ðC:3Þ

for the three-sample configuration, where

Psg ¼ H 2
0ReðxÞImðersÞ=ð16xx�ese

�
s Þfðg2 þ k21Þ

� ð1þ k2�1 =g2ÞIAB2IY ½sinhðk1iLÞ=k1i þ sinðk1rLÞ=k1r�
þ ðYs þ sinðgYsÞ=gÞc2c�2IAB1½sinhðk1iLÞ=k1i
þ sinðk1rLÞ=k1r� þ ðYs � sinðgYsÞgÞc2c�2ðk1k�1=g2Þ
� IAB1½sinhðk1iLÞ=k1i � sinðk1rLÞ=k1r�g; ðC:4Þ

and where

IAB1 ¼ ð1=ciÞ½sinhð2cibÞ � sinhð2ciaÞ�ðAA� þ BB�Þ
� ð1=crÞ½sinð2crbÞ � sinð2craÞ�ðAA� � BB�Þ
þ ði=ciÞ½coshð2cibÞ � coshð2ciaÞ�ðA�B� AB�Þ
þ ð1=crÞ½cosð2crbÞ � cosð2craÞ�ðA�Bþ AB�Þ;

ðC:5Þ

IAB2 ¼ ð1=ciÞ½sinhð2cibÞ � sinhð2ciaÞ�ðAA� þ BB�Þ
þ ð1=crÞ½sinð2crbÞ � sinð2craÞ�ðAA� � BB�Þ
þ ði=ciÞ½coshð2cibÞ � coshð2ciaÞ�ðA�B� AB�Þ
� ð1=crÞ½cosð2crbÞ � cosð2craÞ�ðA�Bþ AB�Þ;

ðC:6Þ

IY ¼ 4

Z Ys=2

0

dy sin2ðgyÞ 1
�

þ CEe�ðYs=2�yÞ=a�2; ðC:7Þ
while the subscripts i and r on the wavenumbers desig-
nate imaginary and real parts, respectively. Note that IY
was evaluated analytically in closed form (using Math-

ematica); the explicit expression is lengthy. In addition,

g is real and given by Eq. (3).
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